

Perchlorate

Presentation Overview

- Background
- Toxicology
- Analytical
- Treatment Technologies
- Case Study
- Work Groups

Background

- Perchlorate (ClO₄-) chemistry
 - Highly oxidized but generally unreactive
 - It is a salt, in many ways similar to nitrate (NO₃)
- What does this mean?
 - Mobile in subsurface but stable: BIG PLUMES!
 - Same for surface water: LARGE AREA AFFECTED.
 - Treatability:
 - Not technically difficult, but development and optimization required
 - Potentially very costly due to volume of water requiring treatment

Understanding the Problem: What is Perchlorate?

- Primary oxidizer in solid rockets
 - Titan, Minuteman, Peacekeeper, Hawk, Polaris, Space Shuttle
- Used in explosives and fireworks
- Found in fertilizers
- Medicine
- Neither sinker nor floater
- Very stable in water

Uses of Perchlorate

Ammonium Perchlorate:

A National Technical Asset Integral to Defense Systems

Tactical and Strategic

Rocket Motors

Mines

Torpedoes

Presentation Overview

- Background
- Toxicology
- Analytical
- Treatment Technologies
- Case Study
- Work Groups

Health Effects

NIS = Sodium Iodide Symporter

 T_3 = Triiodothyronine

 T_4 = Tetraiodothyronine (Thyroxine)

Perchlorate and the Thyroid Gland

Main Symptoms/ Effects of Hypothyroidism

- Adult diagnosed with hypothyroidism usually due to iodine deficiency:
 - Run down, slow, depressed,
 - Sluggish, cold, tired
 - Dryness and brittleness of hair
 - Dry and itchy skin, constipation
 - Muscle cramps
 - Increased menstrual flow
 - Possibly goiter

transient disruption leads to transient effects

Source: National Health and Environmental Effects Laboratory

Toxicology Research Z Assessment Z Management Development of an RfD Scientific Research/ **Data Collection** Risk Assessment Animal Toxicology Clinical Studies Epidemiology Dose-Response **Risk Management** Cell/Tissue Assessment **Experiments** Control Computational **Options** Methods Monitoring/ Hazard Surveillance Identification Collaboration Collaboration Exposure. Other Federal Agencies Assessment States/Local Non-Risk Academia Industry Analyses Public Interest/Environmental

External Input into Research

Oral Reference Dose (RfD) Definition

An RfD is an estimate (with uncertainty spanning perhaps an order of magnitude) of a daily oral exposure to the human population (including sensitive subgroups) that is likely to be without appreciable risk of deleterious noncancer health effects during a lifetime.

Ecological Impacts

- Data gaps identified after external peer review, April 1999
- Performance of toxicity assays
- Biotransport studies
 - Detection
 - Relationship

Presentation Overview

- Background
- Toxicology
- Analytical
- Treatment Technologies
- Case Study
- Work Groups

Special Considerations and Sample Preparation

- Water (drinking and ground) U.S. EPA Method 314
 - Total dissolved solids (TDS)
- Other Matrices
 - Solids (fertilizer and soil)
 - Serum (rat and human)
 - Urine (rat and human)
 - Tissues (rat)
 - Milk (rat)
- NSWC Indian Head Developments

AS-11 vs. AS-16 Column Studies

AS-11

- Older
- Not as sensitive or selective
- Not as robust
- Better for high TDS samples

AS-16

- Newer
- More sensitive/selective
- More robust
- More compatible w/organic
- Better for biological

Presentation Overview

- Background
- Toxicology
- Analytical
- Treatment Technologies
- Case Study
- Work Groups

General Categories

- Physical processes (Ex Situ)
 - Anion exchange
 - Reverse osmosis/nanofiltration
 - Electrodialysis
 - Capacitative deionization
 - Brine treatment and disposal
- Chemical processes (Ex Situ)
 - Reduction (chemical, electrochemical)
 - Oxidation (ozone-peroxide)
 - GAC
 - Catalytic reactor system

- Biological processes (ex situ – anaerobic or anoxic)
 - Biological reduction
 - Biochemical reduction
 - Bioreactors (fluidized bed, packed bed, phytoremediation)
- In situ bioremediation
 - Permeable reactive barrier
 - Substrate injection
- Phytoremediation
 - Pilot pending

Scale of Perchlorate Treatment Technology Projects

Total Number of Projects = 65

Locations of Pilot- to Full-Scale Projects

Perchlorate R&D and Commercial Relationships

- AWWARF (Mgmt. Funding)
 - Northwestern University
 - Penn State University (CDM/ UNLV/City of Redlands, CA)
 - Clarkson University
 - University of Illinois/Metro Water District of S. Calif. (LA)
 - University of Colorado/Nat. Institute of Standards and Technology/ Metro Water District of S. Calif. (LA)
 - University of Houston

- SERDP/ESTCP (Funding)
 - Southern Illinois University
 - Envirogen
 - Geosyntec
- National Science Foundation
 - Penn State University
 - Louisiana State University/
 Swiss Fed. Institute of Technology
 - Iowa State University
- San Gabriel Basin Initiative

Ion Exchange Removal of Perchlorate in Groundwater

Process Flow Diagram for ISEP® System, Calgon Corp.

Biodegradation of Perchlorate in Groundwater

Process Flow Diagram for Kerr-McGee Chemical LLC, Henderson, NV Applied Research Associates, Inc., Biothane Corporation, Smith & Loveless, Inc.

Biodegradation of Perchlorate in Groundwater

Kerr-McGee Chemical LLC, Henderson, NV
Applied Research Associates, Inc., Biothane Corporation, Smith & Loveless, Inc.

In Situ Bioremediation

Geosyntec Consultants, Aerojet, CA

SERDP/ESTCP

Overview of SERDP bioremediation projects (SIU, Envirogen, and Geosyntec)

- Perchlorate-degrading microorganisms are ubiquitous
 - Samples were collected from around the country
- Site-specific electron donor
- Microcosms degraded perchlorate <30 days</p>
- pH lower than 6 may be a problem
- Field tests just beginning

Overall Status

Overview of all projects

- Biological and physico-chemical technologies
- Ex situ and in situ
- All concentration ranges
- Water treatment emphasized, not much attention to soil

Status (cont.)

Chemical Treatment (e.g., Ti(III), Fe⁰-UV, H₂O₂/O₃):

- Not mature technology
- Costly
- But more research could prove fruitful

Status (cont.)

Physical Treatment (e.g., ion exchange, membranes):

- Mature technologies, applicable for drinking water
- High capital and O&M costs;
- Looking for ways to optimize these processes

Status (cont.)

Biological Treatment (e.g., bioreactors, in situ bioremediation):

- Mature technologies,
- Varied cost scenarios
- Need more data to understand bioprocesses
- Much accomplished, many more opportunities....

Presentation Overview

- Background
- Toxicology
- Analytical
- Treatment Technologies
- Case Study
- Work Groups
- Naval Weapons Industrial Reserve Plant (NWIRP) McGregor, TX

NWIRP McGregor Perchlorate

Site History

- Operated for more than 50 years under various owners and tenants
 - United States Army, Navy, and Air Force
- Industrial activities:
 - Weapons and weapons systems
 - Bombs, missiles, and explosives
 - Solid-fuel rocket propulsion systems
 - Ammonium perchlorate

Site History (cont.)

Site History (cont.)

- Ongoing RCRA facility investigation
 - Soil, surface water, and groundwater
- Gray area investigation
 - Based on environmental baseline study results
- Groundwater investigation

Perchlorate Characterization

- Physical properties
 - Volatility
 - Solubility
 - Stability
 - Reactivity
 - Biodegradability
- Electron acceptor
 - Reactive in presence of reducing agent

Perchlorate Characterization (cont.)

Texas regulatory issues/limits

- Drinking and surface water: 22 ppb
 - Texas Risk Reduction Program (TRRP)
- Soil (protective of groundwater): 270 ppb
 - TRRP: Tier I commercial/industrial soil protective concentration limits (PCLs)
- Groundwater: 66 ppb
 - TRRP: commercial/industrial standards groundwater PCLs

Areas of Environmental Concern

Area M: 750-acre watershed

- Onsite perchlorate concentrations
 - Surface water at property line: 5,600 ppb
 - Groundwater: 4 to 91,000 ppb
 - Springs: 22,000 ppb
- Drainage pathway
 - Onsite discharge to unnamed tributary
 - Station Creek
 - Leon River/Lake Belton
 - Drinking water intake

Interim Stabilization Measures (ISMs)

- Why ISMs?
 - Migration of perchlorate-contaminated groundwater and surface water from site
 - Action letter from the TNRCC (February 1999) requiring migration abatement
- Treatment technology evaluation
- Bench-scale studies
- Pilot-scale studies

Bench-Scale In Situ Study

Objective: Evaluate in situ treatment of perchloratecontaminated groundwater

- Permeable reactive barrier (PRB)
- PRB media evaluation
- Experimental approach
 - Plastic bioreactors (same as groundwater)
 - Influent concentration: 5,000 to 8,000 ppb
 - Flowrates similar to groundwater

Bench-Scale In Situ Study (cont.)

Compost

Oil-Coated Wood Shavings

Cotton Seed

GAC

ISM Selected Strategies

- Groundwater cutoff and collection trenches
- In situ groundwater biotreatment
- Soil biotreatment

Cutoff/Collection Trench Construction

ISM design goals

- Abate off-site migration of perchlorate-contaminated groundwater and surface water
- Interception and collection in trenches
- In situ bioremediation

Cutoff/Collection Trench Construction

Cutoff/Collection Trench Construction

A-Line property line cutoff trench

- Extends through weathered limestone water-bearing zone
- 30 inches wide
- Up to 25 feet deep
- Perforated collection pipe
- Drainage aggregate

Cutoff/Collection Trench Construction (cont.)

Cutoff/Collection Trench Construction (cont.)

Collection System Modification

Collection System Modification

Collection System

Clay

Excavated Trench Material

Geotextile

Drainage Aggregate (#57 Gravel)

GAC (2 lb/ft)

Native Materials

A-Line Trench

Clay

Excavated Trench Material

Geotextile

Drainage Aggregate (#57 Gravel)

Cotton Seed Meal (2 lb/ft)

Cotton Seed (20 lb/ft)

Native Materials

B-Line Trench

Clay

Excavated Trench Material

Geotextile

Compost (15% by volume) and Drainage Aggregate (#57 Gravel)

Native Materials

C-Line Trench

RITS OCT 2001: Perchlorate

Soil Treatment System

Additional ISM Issues

- Emergency order
 - Originally no discharge allowed
 - Allowed discharged at 22 ppb as of May 2001
 - Should be in effect until TPDES permit is issued
- Winter rains 200% above normal
 - Higher groundwater flow than expected, electron donor amendment
 - 22 million gallons stored during period of no discharge

Site Costs and Cost Savings

- ~\$10M for Area M to date
 - Includes site investigations
 - Bench and pilot studies of different treatment systems
 - Full-scale implementation
- Cost avoidance
 - ~\$3M in capital costs compared to existing technologies
 - ~\$95K per year in O&M

Successes

- Successful partnering initiative
 - TNRCC and U.S. EPA
- Fast track implementation
- Seamless relationship between CLEAN and RAC contractors
- Created an avenue to educate and distribute information to the community and stakeholders

Successes (cont.)

- Pilot-scale treatment system used as remedy
- Innovative in situ treatment system rendered ex situ system unnecessary at NWIRP McGregor
 - Before pilot-scale study
- ISM cost savings

Presentation Overview

- Background
- Toxicology
- Analytical
- Treatment Technologies
- Case Study
- Work Groups
- Inter-Agency Perchlorate Steering Committee (IPSC)
- DoD Perchlorate Treatment Technology Program

Inter-Agency Perchlorate Steering Committee

- Evaluate and understand potential health risks associated with perchlorate in the environment
- To get the best scientific information on the toxicology of perchlorate for use by the decision makers and most importantly to the public
- Partnering among all stakeholders

Major Partners

- DoD
- NASA
- U.S. EPA
- 14 state regulatory representatives
- Native American tribal representatives
- Perchlorate study group (Industry)
- AWWARF
- USDA, FDA
- Citizen stakeholders

Work Groups: IPSC

Integrated Approach

- Analytical
- Health effects
- Treatment technology
- Ecological

"Parallel"
Development

Stakeholder Forums

- Bring together the experts in health effects/toxicology, ecological impacts/transport and transformation, analytical methods, and treatment technology
- Occurrence information
- Provide information on current initiatives
- Hear public and stakeholder concerns

DoD Perchlorate Treatment Technology Workgroup

- Provide a consistent and coordinated approach to treatment technology development and deployment (TTDD)
- Develop and advocate a vision of success for TTDD efforts
- Develop coordinated DoD representation to:
 - Interagency Perchlorate Steering Committee (IPSC)
 - Interstate Technology and Regulatory Cooperation (ITRC)
 - Federal Remediation Technologies Roundtable (FRTR)
 - Others as appropriate

DoD Perchlorate Treatment Technology Workgroup (cont.)

- Keep ESOHPB updated on technology status
- Serve as information clearing house for DoD and IPSC
- Services: USA, USN, USAF (and their respective service centers)
- Other components: DLA, CoE
- DUSD(ES)
- SERDP/ESTCP

Navy Involvement

- USAF Designated as DoD Lead Agency for Perchlorate
 - Coordinate Perchlorate Efforts
 - Recommend Policy
- Navy has representatives on the Work Groups

 Engineering Field Divisions and NSWC Indian Head have experience with perchlorate

Status

Last count: 65 major treatment technology projects

- 31 lab/bench, 26 pilot, 7 full-scale
- Full-scale:
 - Fluidized bed bioreactors
 - lon exchange
 - Anaerobic treatment cell (soil)
 - In situ biobarrier (groundwater)
- Numerous university research projects

Looking to the Future....

- Fall 01:
 - IPSC peer review of toxicology studies released to stakeholders and public
 - ESTCP projects start
- FY02: Cleanup standards promulgated by states
- FY03: MCL??

References

Web Sites

http://www.dhs.cahwnet.gov/ps/ddwem/chemicals/perchl/perchlindex.htm

http://www.epa.gov/ogwdw/ccl/perchlor/perchlo.html

http://www.adeq.state.az.us/environ/water/dw/fact.html

http://www.epa.gov/safewater/ccl/perchlor/ipsc.html

http://tera.org/Perchlorate/welcome.htm

http://www.gwrtac.org/pdf/perc_report.pdf

http://www.epa.gov/safewater/ccl/perchlor/r9699fac.pdf

http://www.epa.gov/nceawww1/perch.htm

http://www.denix.osd.mil/denix/Public/Library/Water/Perchlorate/perchlorate.html